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Background and objective: The high incidence of breast cancer in women has increased significantly in 

the recent years. Physician experience of diagnosing and detecting breast cancer can be assisted by using 

some computerized features extraction and classification algorithms. This paper presents the conduction 

and results of a systematic review (SR) that aims to investigate the state of the art regarding the computer 

aided diagnosis/detection (CAD) systems for breast cancer. 

Methods: The SR was conducted using a comprehensive selection of scientific databases as reference 

sources, allowing access to diverse publications in the field. The scientific databases used are Springer 

Link (SL), Science Direct (SD), IEEE Xplore Digital Library, and PubMed. Inclusion and exclusion criteria 

were defined and applied to each retrieved work to select those of interest. From 320 studies retrieved, 

154 studies were included . However, the scope of this research is limited to scientific and academic works 

and excludes commercial interests. 

Results: This survey provides a general analysis of the current status of CAD systems according to the 

used image modalities and the machine learning based classifiers. Potential research studies have been 

discussed to create a more objective and efficient CAD systems. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Breast cancer is one of the most common cancers diagnosed

n women around the world and it is a main cause of fatality

mong women. In low-income and middle-income countries the

ortality rates are relatively high compared to developed coun-

ries. According to the World Health Organization’s International

gency for Research on Cancer (IARC) 2013 report, more than 1.7

illion women in 2012 were diagnosed with breast cancer world-

ide. This is considered around 11.9% of all cancers diagnosed in

he same year with 522,0 0 0 death cases reported. It is also ex-

ected that by 2025 there will be 19.3 million new cancer cases

1,2] . Moreover, in developing countries like Egypt, the dense pop-

lation and the patients’ ignorance to the disease symptoms and

eeking medical consultation either when it’s too late or extremely

ritical leads to higher mortality. Also, shortage of medical special-

sts and experts in rural areas adds up to the problem of early and

ccurate diagnosis of breast cancer causing higher mortality rate.
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sing information technology and medical data to build medical

upport systems which can mimic the doctor’s reasoning and con-

lude the symptoms is one solution to breast cancer early detec-

ion and hence increase the treatment chances and decrease mor-

ality rate. 

Medical image examination is the most effective method for di-

gnosis of breast cancer. Different medical imaging modalities are

sed for diagnosis such as: digital mammogram (DM), ultrasound

US), magnetic resonance imaging (MRI), microscopic (histologi-

al) images, and Infrared thermography (IRT). As a means to as-

ist radiologists and physicians in identifying abnormalities, these

odalities produce images which have reduced mortality rates by

0–70% [3] . Images interpretation is operator-dependent which re-

uires expertise, thus using information technology is a necessity

o accelerate and enhance the accuracy of the diagnosis provid-

ng a second opinion to the expertise [4] . Using some computer-

zed features extraction and classification algorithms formulated as

omputer-aided diagnosis/detection (CAD) can be a great helpful

ool for physicians and experts in detecting abnormalities. 

Many effort s were made to develop CAD systems which are

ased on the advances of digital image processing, pattern recog-

ition and artificial intelligence. The CAD systems are expected to

vercome the operator dependency, increase diagnosis rate, and re-

https://doi.org/10.1016/j.cmpb.2017.12.012
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duce the expense of medical complementary modalities [5–7] . And

thus it may help to reduce false positive reactions that may lead

to futile treatment and psychological, physical, and economic costs

that come with a false positive. And it also may reduce false neg-

ative readings that may cause omission of treatment that could

result in remissions. It is reported that the detection sensitivity

without CAD is around 80% and with it sensitivity reaches 90% [8] .

In 2011, Sadaf et al. [9] studied the performance of full-field dig-

ital mammography (FFDM) augmented with CAD tools. The study

showed that CAD combined with mammography presented 100%

sensitivity in identifying cancers manifesting as microcalcifications

and 86% sensitivity for other mammographic appearances of can-

cer. Accordingly, CAD has become the most active field of research

in medical imaging to improve the precision of a diagnosis [10–12] .

Computer aided detection is concerned with using a computer

output to determine the location of suspect lesions. Afterwards, the

radiologists are the one who is in charge of the characterization

and diagnosis of the abnormalities as well as the patient manage-

ment. Computer aided diagnosis on the other hand takes the de-

tection done by a human or a computer and gives an output that

determines the characterization of the lesion and gives the proba-

bility of malignancy and any abnormalities [13] . 

In general, a complete CAD system involved segmented struc-

tures, the detection of abnormalities and the extraction of their

characteristics for a subsequent classification of the problem. Thus,

the CAD systems can be categorized into four major stages. The

first stage is preprocessing to prepare the images for the subse-

quent stages such as cleaning the medical image and removing

noise from it through a set of image preprocessing operations.

The second stage is the segmentation of the region of interest

(ROI) in the image, which is a procedure of dividing the input

image into several regions according to the visual characteristics.

The third stage is the features extraction and selection where fea-

tures are extracted from the cleaned images then the most dis-

criminative features are selected. The selected features are capable

of differentiating between normal and cancerous regions in order

to minimize the classification error. Despite large effort, there is

still no agreement on the features that are most suitable for this

task. Many kind of features such as dynamic features, textural fea-

tures, and morphological features have been traditionally used in

tumor classification [14] . These selected features are organized in

a database as an input to the classification stage. The final stage in

the CAD system is the classification that is regarded as the heart of

the CAD. It is a data mining process that assigns labels or classes to

different groups, whose aim is to discover and extract hidden pat-

terns from large datasets using different Machine Learning Tech-

nique (MLT) [15,16] . The generated model or patterns are used to

predict the future unknown cases. Many MLTs have been used in

the medical domain such as: K-nearest neighbors (K-NN) [17] , Ar-

tificial Neural Network (ANN) [18,19] , Decision Tree (DT) [20, 21] ,

and Support Vector Machine (SVM) [22,23] . The selection of an ap-

propriate MLT to build a classifier responsible for separating differ-

ent kind of breast lesions is the key component of the develop-

ment of CAD systems [14] . 

The contribution of this systematic review is to present the

state of the art proposed in the literature that focuses on different

machine learning techniques used for the classification of breast

tumor lesions. Different statistical analysis of different aspects of

the CAD systems presented in the selected papers are conducted

using charts, rather than just presenting a short summary of all

studies. The paper is organized as follows: the “Methodology” in

Section 2 presents the process of conducting the review. The “Re-

sults” are presented in Section 3 . The “Discussion” is presented in

Section 4 . And finally the paper is concluded in Section 5 , and

some points of future work are recommended. 
i  
. Methodology 

.1. Search criteria 

This systematic review aims to identify various studies related

o breast cancer CAD systems based on medical images and MLT

lassifiers. The primary aim of this review is to find the answer of

he following research questions: 

• What are the MLT classifiers currently applied for breast cancer

CAD systems based on medical imaging? 
• What are the modalities of medical imaging used for the devel-

opment of breast cancer CAD systems? 
• What are the evaluation criteria used for the assessment of

breast cancer CAD systems? 
• What are the data sets used for the development of breast can-

cer CAD systems? 

Several electronic databases were searched, Springer Link

 http://www.springerlink.com ), Science Direct (Elsevier) ( http://

ww.sciencedirect.com ), IEEE Xplore ( http://www.ieeexplore.ieee.

rg , and ( https://www.ncbi.nlm.nih.gov/pubmed/ ). The following

earch keywords were used: “breast cancer”, “image”, “learn-

ng”, “classification”, “classifier”, “classify”, “computer-aided diag-

osis”, “computer-aided detection”, “computer-assisted diagnosis”,

nd “CAD”. Maximum possible number of publications was in-

estigated through the years from 2012 to January 2017. How-

ver, some relevant studies may have been skipped unintentionally.

he searching strategy is designed according to different databases

earching standards. Table 1 presents the compositions of terms

sed according to the search engine of each database aiming to

btain all possible existing literature work. 

All relevant studies were investigated, but only studies that sat-

sfied the following inclusion criteria are included: (1) breast can-

er is the only disease considered (other diseases are excluded); (2)

t least one MLT is used as a classifier; (3) at least one of differ-

nt medical imaging modalities is used (other diagnosis techniques

re excluded); (4) the most common performance measures of the

pplied classifiers are reported (5) all paper articles must be a full

omplete paper (abstracts only are excluded); (6) work published

n between 2012 to January 2017. Some other relevant studies are

xcluded such as surveys, books, letters, and non English articles.

he search was carried out between December 2016 and January

017. Initially, large amount of research articles was collected due

he broadness of the subject under study “computer aided diag-

osis/detection”. Totally, 320 studies were retrieved. In the second

tep, articles irrelevant to the inclusion search criteria are removed.

o, only 154 studies (48.125%) are included while the rest 166

tudies are not fitted well with the predefined search criteria and

hese articles are excluded from the retrieved list. In this SR, the

nformation extracted from each study included the used imaging

odality, machine learning techniques which are used as classifier,

cope of the included study, results using the performance crite-

ia, data sets and number of images/cases used if available. Fig. 1

hows a flow diagram which summarizes the selection of the re-

rieved studies. It should be noted that many articles include more

han one MLT, and they were all counted when constructing the

orresponding diagrams. 

During the search, a significant variety of medical publications,

omputational intelligence, image processing and pattern recogni-

ion were observed. All retrieved articles have been published in

ournals of Springer Link, Science Direct, and PubMed. According

o IEEE search, most IEEE studies are conference proceedings and

re included in this SR. Table 2 shows the details of journals name,

ublishers and number of articles being published in each jour-

al. From this table, it is shown that: (1) 17 journals published

n Springer Link are considered; (2) 15 journals are published in

http://www.springerlink.com
http://www.sciencedirect.com
http://www.ieeexplore.ieee.org
https://www.ncbi.nlm.nih.gov/pubmed/
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Table 1 

Composition of search terms. 

Literature 

sources 

Search in Search terms 

Springer Link Search Command (“breast cancer”) AND (“image”) AND (“classification” OR “machine learning” OR “classifier” OR “learning”) AND 

(“computer-aided diagnosis” OR “computer aided detection” OR “computer assisted diagnosis” OR “CAD”) 

Science Direct Title, Abstract, Keywords (("Breast cancer" AND "image") AND ("learning" OR "classification" OR "classifier" OR "classify")) AND ("computer 

aided diagnosis" OR "computer aided detection" OR "computer assisted diagnosis" OR "CAD") 

IEEE Title, Abstract, Keywords, 

“Metadata”

"Breast cancer" AND "image" AND ("learning" OR "classification" OR "classifier" OR "classify") AND ("computer 

aided diagnosis" OR "computer aided detection" OR "computer assisted diagnosis" OR "CAD") 

PubMed All Fields ("Breast cancer" AND "image") AND ("learning" OR "classification" OR "classifier" OR "classify") AND ("computer 

aided diagnosis" OR "computer aided detection" OR "computer assisted diagnosis" OR "CAD") 

22PubMed:12 SVM 5 ANN   2 K-NN   3 DT   2 DA 3 RF  1 Fuzzy  1 NB  2 LR   1 DL  2 Boost  

Yes

Yes

NO

NO

Yes

NO

Other diseases

Yes

NO

Books, proceedings, posters, reports, ….

Databases
Springer Link

ScienceDirect
IEEE

PubMed

Breast 
cancer 
articles

Classification
using MLT

Statistical and other techniques

Abstracts, irrelevant, reviews, surveys, 
non-English, redundant

Total included articles 154

40 IEEE:  27 SVM  11 ANN 7 K-NN   4 DT 3 DA   3 RF   3 Fuzzy  4 NB  1 LR 1 DL  2 MIL     

Excluded
166

43 SD : 19 SVM    11 ANN   6 K-NN   5 DT  5 DA  4 RF   3 Fuzzy  3 NB   6 LR  5 DL  4 Boost   2 PL  1 LSMD

49 SL:    23 SVM   13 ANN 6 K-NN   2 DT   4 DA 3 RF  5 Fuzzy  2 NB 1 LR   3 ARM   1 ACO     

Journal
articles and 
IEEE conf.

Satisfy 
Inclusion 
criteria

Fig. 1. Flow diagram summarizes the selection of the retrieved studies. 
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Table 2 

List of used journals and the corresponding number of papers. 

Springer journals Science Direct journals PubMed journals IEEE journals 

Journal of Digital Imaging (9) Computer Methods and Programs in 

Biomedicine (9) 

Medical Physics (6) Transactions on Medical Imaging (1) 

Journal of Medical Systems (8) Computers in Biology and Medicine 

(7) 

Computational and Mathematical 

Methods in Medicine (3) 

Systems Journal (1) 

Neural Computing and Applications 

(8) 

Expert Systems with Applications (5) Radiology (2) Transactions on Fuzzy Systems (1) 

International Journal of Computer 

Assisted Radiology and Surgery (4) 

Ultrasound in Medicine and Biology 

(5) 

Technology and Health Care (1) Transactions on Systems, Man, and 

Cybernetics-Part A: Systems and 

Humans (1) 

Multimedia Tools and Applications 

(3) 

Neurocomputing (4) Journal of Medical Imaging (1) IEEE Transactions on Biomedical 

Engineering (1) 

BioMedical Engineering OnLine (3) Medical Image Analysis (2) Studies in Health Technology and 

Informatics (1) 

EURASIP Journal on Advances in 

Signal Processing (3) 

Ultrasonics (2) Physics in Medicine and Biology (1) 

European Radiology (2) Computerized Medical Imaging and 

Graphics (2) 

Bio-Medical Materials and 

Engineering (1) 

S ̄adhan ̄a (1) Applied Soft Computing (1) Journal of Medical Engineering and 

Technology (1) 

Journal of Medical Ultrasonics (1) Information Sciences (1) Journal of Magnetic Resonance 

Imaging (1) 

Biomedical Engineering Letters (1) Engineering Applications of Artificial 

Intelligence (1) 

Journal of Visualized Experiments (1) 

Evolving Systems (1) Procedia Computer Science (1) Journal of Engineering in Medicine 

(1) 

Human-Centric Computing and 

Information Sciences (1) 

Artificial Intelligence in Medicine (1) Computer Methods in Biomechanics 

and Biomedical Engineering (1) 

BMC Cancer (1) Journal of Applied Logic (1) Journal of Clinical Ultrasound (1) 

Memetic Computing (1) Academic radiology (1) 

BMC Medical Imaging (1) 

EURASIP Journal on Image and Video 

Processing (1) 
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Science Direct; (3) 14 journals are published in PubMed in addi-

tion to those found in Springer Link, Science Direct, IEEE and are

found also in PubMed; (4) only five journals published by IEEE

are included, each contains 1 paper. As shown in Table 3 , there

are many IEEE conference papers included. To be precise, a total

of 35 papers are collected from IEEE conference proceedings. Re-

garding PubMed it was found that its search results contain (18)

papers published by Springer Link, (31) papers published by Sci-

ence Direct, and (6) papers published by IEEE, so these papers

are excluded from PubMed as they have already been included

in the other three databases. After excluding these papers, it was

found that there are 14 journals included in PubMed. These jour-

nals have been added as PubMed journals as they are collected

through PubMed search. 

2.2. Data extraction 

The data extracted from the selected articles are presented in

Tables 4–7 which present the search results for Springer Link, Sci-

ence Direct, IEEE, and PubMed respectively. In the investigated lit-

erature, it is found that the frequent problems in breast cancer are:

(1) classification between normal and abnormal tissues, (2) classi-

fication of abnormal tissue to benign and malignant, (3) classifi-

cation of breast tissue into dense and fatty tissue, and (4) posi-

tive and negative lymph node classification. To solve these prob-

lems, five number of image modalities are used: DM, US, MRI, mi-

croscopic (histological) images, and infrared thermography (IRT).

A total of 16 MLTs are used in the presented literature which

are: SVM, ANN, K-NN, Decision tree (DT), Discriminant Analysis

( DA)(Quadratic DA (QDA), and Linear DA (LDA)), Random Forest

(RF), Fuzzy classifier, Naïve Bayesian (NB), Logistic Regression (LR),

Deep learning (DL), Ensemble learning, Association Rule Mining

(ARM), Polynomial classifier (PL), Multiple Instance Learning (MIL),
nt Colony Optimization (ACO), and Least Square Minimum Dis-

ance (LSMD). For evaluation of CADs, the most common used per-

ormance measures in the literature are: Accuracy (Acc), Sensitivity

Sn), Specificity (Sp), and Area Under the Curve (AUC). 

. Results 

This SR reviewed the publications of CAD systems from 2012

ill January 2017. It was found that a commonly used framework

n most of the publications under study includes 4 stages which

re preprocessing, segmentation, features extraction and selection,

nd finally the classification stage that is regarded as the heart of

he CAD. In this SR our interest was the usage of different MLTs as

lassifiers for CADs system of breast cancer. 

This section presents the analysis of the results shown in Tables

–7 . In this section, the used modalities, MLTs, performance crite-

ia, and datasets are shortly declared. The proposed work covered

he period from 2012 to January 2017. Fig. 2 indicates the rate of

ublication in this time period. Although breast cancer CAD sys-

em is not a new topic, it is clear that the number of its publica-

ions is varying slowly over time and it can still be increased in the

ext time stage. From the bar chart it is shown that the trend is

n increased interest in the CAD systems research. The year 2015

as the largest number of publications. Even though a decrease in

umber of publications is observed in 2016 compared to 2015, still

he number of publications in 2016 is stable or a little bit more

han the years 2012–2014. Also it is shown that only for the month

anuary 2017 the number of publications is 6 papers, so it is ex-

ected to have an increase in number of publications in 2017. Also

t is noted from Tables 4–7 that the new trend of deep learning

tarted to be used in 2016 and 2017 which shows an increased in-

erest recently in applying deep learning in CAD systems. 
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Table 3 

List of IEEE conferences. 

Name of used IEEE conferences 

Society of Instrument and Control Engineers of Japan (SICE), 2016 55th Annual Conference of the 

Information Science and Technology (CiSt), 2016 4th IEEE International Colloquium on 

Advanced Robotics and Mechatronics (ICARM), International Conference on 

Evolutionary Computation (CEC), 2016 IEEE Congress on 

Programming and Systems (ISPS), 2015 12th International Symposium on 

Intelligent Systems and Control (ISCO), 2015 IEEE 9th International Conference on 

2015 IEEE Congress on Evolutionary Computation (CEC) 

2015 IEEE 28th International Symposium on Computer-Based Medical Systems 

2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) 

Computer, Communications, and Control Technology (I4CT), 2015 International Conference on 

Image Processing (ICIP), 2015 IEEE International Conference on 

2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) 

Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015 38th International Convention on 

Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), 2015 International Conference on 

2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (1) 

2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2) 

2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) 

2015 International Conference on Advances in Biomedical Engineering (ICABME) 

2015 27th International Conference on Microelectronics (ICM) 

Computational Intelligence in Healthcare and e-health (CICARE), 2014 IEEE Symposium on 

2014 22nd Iranian Conference on Electrical Engineering (ICEE) 

Intelligent Systems: Theories and Applications (SITA-14), 2014 9th International Conference on 

IWSSIP 2014 Proceedings 

2014 International Conference on Computer, Control, Informatics and Its Applications 

Information Technology and Electrical Engineering (ICITEE), 2014 6th International Conference on 

Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014 International Conference on 

Soft Computing and Pattern Recognition (SoCPaR), 2014 6th International Conference of 

Multimedia Computing and Systems (ICMCS), 2014 International Conference on 

2013 IEEE International Conference on Image Processing 

Bioinformatics and Bioengineering (BIBE), 2013 IEEE 13th International Conference on 

Visual Communications and Image Processing (VCIP), 2013 

Systems, Signal Processing and their Applications (WoSSPA), 2013 8th International Workshop on 

Image Analysis and Interpretation (SSIAI), 2012 IEEE Southwest Symposium on 

Multimedia Computing and Systems (ICMCS), 2012 International Conference on 
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Fig. 2. Number of papers published on CADs from 2012 to January 2017 using spec- 

ified criteria. 
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Fig. 3. Samples of DM images used in publications of the proposed SR (adapted 

with permission from Springer Publisher from Ref. [24] and with permission from 

Elsevier Publisher from Ref. [73] ) [24,73] . 
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.1. Image modalities 

Different image modalities are used to examine the presence of

reast cancer nowadays. The image modalities investigated in this

R are: 

DM is the most commonly and important used screening tech-

ique in clinical practice. It has the capability of detecting tumors

efore they develop further and become easily detected and felt

y the physician. Although the DM has drawbacks as being an in-

ppropriate screening technique for ladies with dense breasts be-

ause it uses ionizing radiations, still X-ray mammography is the

tandard breast cancer screening method that offers high 2D reso-

ution. Thus DM is able to detect very small variations in compo-

ition of the tissues as micro-calcifications [177] . DM is used ex-
ensively in the proposed SR where out of 154 used papers there

re 98 papers that depend on DM to classify breast cancer tissues.

ig. 3 shows samples of DM images used in different publications

f the proposed SR. 

US is a convenient modality for cancer detection for ladies hav-

ng dense breasts. Moreover, it is useful for tumor detection when

etting negative mammography. US evaluates the size of tumor

nd it can characterize abnormalities discovered by DM. On the

ther hand, its capability of discovering contra-lateral malignant

esions is limited [178] . Elastography and shear wave elastography

re a developing form of US. Number of papers included in the

resented SR that adopt US images for detecting and diagnosing of
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Table 4 

Springer Link search results. 

Reference Imaging 

modality 

Machine learning 

technique 

Scope Evaluation results Image data sets 

[24] DM KNN classifying ROI as normal or abnormal Acc = 92.81% ± 0.0093, 

Sn = 92.85% ± 0.0099, 

AUC = 0.9713 

IRMA 

MIAS 

[25] DM SVM classifying normal and masses 

classifying benign and malignant 

average Acc from 68 to 100% MIAS 

109 cases 

[26] DM Associative 

classifier with 

fuzzy-ANN 

classification of breast tissues and 

masses 

Acc = 95.11%, Sn = 92.22%,Sp = 96.39 DDSM 

170 benign 130 

malignant 

[27] DM Fuzzy Gaussian 

Mixture Model 

(FGMM) 

classify into malignant or benign Acc = 93%, Sn = 90%, 

Sp = 96% 

DDSM 

300 images 

[28] DM SVM 

RF 

NB 

predicting benign/malignant lesions, 

dense/fatty tissue classification, 

finding identification (mass / 

microcalcification distinction) 

benign/malignant: 

ACC = 89.3% to 64.7% 

dense/fatty tissue: 

ACC = 75.8% to 78.3% 

finding identification: 

ACC = 71.0% to 83.1% 

INbreast 

BCDR 

[29] DM SVM classify abnormalities using fusion 

features 

Acc = 93.17%, Sn = 92.71%, 

Sp = 93.46% 

MIAS 

[30] US KNN diagnose non-mass lesions appearing 

as hypoechoic areas 

Sn = 87.8%, Sp = 89.5%, 

AUC = 0.93 

Private 

97 cases 

[31] DM Adaptive 

Differential 

Evolution 

Wavelet-ANN 

(Ada-DEWNN) 

classification of benign/malignant 

breast tissues. 

MIAS: 

Acc = 89.38%, Sn = 83.58% , 

Sp = 93.43%, AUC = 0.935 

DDSM : 

Acc = 87.27%, Sn = 82.5%, 

Sp = 90.33%, AUC = 0.920 

MIAS 

DDSM 

[32] MRI KNN non-invasive lesion 

subtypeclassification 

Acc = 74.7%, AUC = 0.816 Private 

200 patients 

[33] US SVM discriminate benign and malignant 

tumors 

Acc = 86.96%, Sn = 86.96%, Sp = 86.96%, 

AUC = 0.894 

Private 

138 cases 

[34] DM SVM 

ANN 

multiple classifier system for masses 

classification 

SVM: AUC = 0.932 

ANN: AUC = 0.925 

DDSM 

303 images 

[35] DM SVM detection of masses Acc = 83.53%, Sn = 92.31%, 

Sp = 82.2%, AUC = 0.8033 

DDSM 

[36] DM RF automated segmentation and 

classification method 

Acc = 97.73%, Sn = 92.5% 

Sp = 98%, AUC = 0.9505 

DDSM 

MIAS 

[37] DM Fuzzy C-Means 

(FCM) 

ROI classification into benign, 

malignant, or normal tissue. 

Acc = 87%, Sn = 90 to 47%, 

Sp = 84 to 84% 

DDM 

[38] DM SVM detection of microcalcifications (MC) Sn = 92%, AUC = 0.8676 Inbreast 

410 images 

[39] US SVM detection and diagnosis of breast 

masses 

Acc = 95.85%, Sn = 96%, 

Sp = 91.46%, AUC = 0.94 4 4 

Private 

120 images 

70 benign 

50 malignant 

[40] DM SVM classify feature vector as malignant or 

nonmalignant 

IRMA: 

Sn = 99%, Sp = 99% 

DDSM : 

Sn = 97%, Sp = 96% 

IRMA 

DDSM 

[41] US SVM evaluating breast tumors. Acc = 96.67%, Sn = 96.67%, Sp = 96.67%, 

AUC = 0.9827 

Private 

210 images 

120 benign 

90 malignant 

[42] DM SVM Classification of breast cancer Acc = 97.14%, Sn = 98.24%, 

Sp = 95.08%, AUC = 0.9938 

WBC 

699 cases 

458 benign 

241 malignant 

[43] DM SVM classification as malignant masses and 

benign tumors 

Acc = 99%, AUC = 0.90 MIAS 

[44] MRI SVM 

KNN 

RF 

discriminating malignant and benign 

breast lesions. 

SVM: 

Acc = 82.8%, Sn = 94%, 

Sp = 77.8%, AUC = 0.809 

Private 

234 training 

93 test 

[45] MRI Fuzzy C-Means 

(FCM) 

detecting breast masses Detection rate = 100% Private 

61 biopsy- 

lesions 

[46] IRT ACO classifying breast into benign and 

malignant cases 

Acc = 79.52% Private 

146 images 

29 malignant 

117 benign 

[47] DM Fuzzy C-Means 

(FCM) 

microcalcifications cluster 

enhancement method 

Private: 

Acc = 95%, Sn = 93% 

MIAS: 

Acc = 94%, Sn = 82% 

private 

MIAS 

( continued on next page ) 
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Table 4 ( continued ) 

Reference Imaging 

modality 

Machine learning 

technique 

Scope Evaluation results Image data sets 

[48] DM SVM breast mass classification AUC = 0.805 ± 0.012 DDSM 

600 benign and 

600 malignant 

[49] DM DT detection of breast cancer based on 

three types of decision tree classifiers 

Acc = 97.51%, 

AUC = 0.99382 

WBC 

699 cases 

458 benign 

241 malignant 

[50] DM ANN detection and classification of breast 

cancer. 

Acc = 97.66%, Sn = 98.65%, 

Sp = 95.82%, AUC = 0.993 

WBC 

[51] US LDA distinguishing positive and negative 

lymph nodes. 

AUC = 0.85 Private 

90 patients 

[52] DM SVM 

ANN 

detect and classify masses SVM: 

AUC = 0.937 

ANN: 

AUC = 0.925 

DDSM 

[53] US Multiple-DA classification of breast mass invasive carcinomas: 

Acc = 88.4% 

noninvasive carcinomas: Acc = 80.6% 

Fibroadenomas: 

Acc = 86.0% 

Cysts: 

Acc = 84.1% 

Private 

363 images 

65 training set 

298 test set 

[54] MRI SVM diagnosis of non-mass-enhancing 

lesions. 

AUC figures Private 

84 images 

61 malignant 

23 benign 

[55] DM ANN 

KNN 

detection of malignant masses and 

architectural distortions 

true-positive fraction (TPF) = 0.620 Private 

200 cases 

[56] DM ANN tissue density classification using local 

binary pattern 

AUC = 0.79 Private 

400 image 

[57] DM Association rule 

mining (ARM) 

benign–malignant classification Acc = 98%, Sn = 97.4%, 

Sp = 98.6% 

DDSM 

[6] DM ARM classify between normal and cancerous 

tissues 

Sn = 96.5% 

Sp = 96.88% 

DDSM 

[58] US Binary-LR classification of BI-RADS category 3 

breast masses 

Sn = 95%, Sp = 73%, 

AUC = 0.95 

Private 

69 masses 

21 malignant 

48 benign 

[59] MRI NB-QDA (NQDA) 

SVM 

Fisher’s LDA 

classification of the challenging lesions NQDA: 

AUC = 0.87 

Private 

63 patients 

[60] DM local linear 

wavelet-ANN based 

firefly 

classifying breast cancer tumor Acc = 98.14% WBC 

[61] DM LLWNN based 

recursive least 

square (RLS) 

breast cancer recognition Acc = 97.2% WBC 

[62] US 

DM 

Probabilistic-ANN discriminate between benign and 

malignant 

Acc = 93.5% 

[63] IRT SVM detecting breast cancer. Acc = 88.10%, Sn = 85.71%,Sp = 90.48% Private 

50 images 

25 normal 

25 cancerous 

[64] DM Swarm 

Optimization-ANN 

detects the presence of 

microcalcification clusters. 

MIAS: 

Sn = 95%, Sp = 92.3%, AUC = 0.9761 

Private: 

Sn = 91%, Sp = 86.1%, AUC = 0.9138 

MIAS 

Private 

[65] DM Differential 

Evolution 

Optimized 

Wavelet-ANN 

detection of tumor masses Sn = 96.9%, Sp = 92.9%, 

AUC = 0.97843 

MIAS 

[66] US SVM classify tumors into benign and 

malignant 

Acc = 91.07%, 

AUC = 0.96 

Private 

168 cases 

72 malignant 

96 benign 

[67] DM SVM classify potential micro-calcifications Acc = 100% MIAS 

Private 

[68] DM Kernel 

Self-optimization 

Fisher-DA 

breast tissue density classification Acc = 94.46% MIAS 

[69] DM SVM 

ANN 

characterize breast lesions according to 

BI-RADS classes 

SVM: 

Acc = 96.91%,AUC = 0.924 

ANN: 

Acc = 97.14%, AUC = 0.933 

Private 

286 cases 

( continued on next page ) 
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Table 4 ( continued ) 

Reference Imaging 

modality 

Machine learning 

technique 

Scope Evaluation results Image data sets 

[70] US SVM categorize the breast masses to benign 

or malignant classes. 

Acc = 95%, Sn = 90.91% 

Sp = 97.87% 

Private 

80 cases 

33 malignant 

47 benign 

[71] DM Ensemble learning 

system consisting 

of (DT, SVM, and 

KNN) 

classification of a suspicious mass as 

malignant or benign 

Acc = 72% DDSM 

Fig. 4. Samples of US images used in publications of the proposed SR (adapted with permission from Elsevier Publisher from Ref. [72] ) [72] . 

Fig. 5. Samples of MRI images used in publications of the proposed SR (adapted with permission from Springer Publisher from Refs. [44,45] ) [44,45] . 
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breast cancer are 30 papers. Fig. 4 presents samples of US images

used in publications of the proposed SR. 

MRI images the whole breast and presents it as thin slices that

cover the entire breast volume; moreover, it provides information

about the vascularity of the breast tissue. It shows high potential

for screening of high-risk women, and evaluating therapy effects

[179] . Only 14 papers mentioned in this SR use this type of modal-

ity. Fig. 5 presents samples of MRI images used in different publi-

cations of the proposed SR. 

Microscopic images are using histological images which are mi-

croscopic examinations of tissues to detect tumors. Only 8 papers in

this SR use microscopic images. Fig. 6 presents samples of micro-

scopic images used in publications of the proposed SR. 

IRT can be used in observing pre-cancerous and early signs

of breast cancer using the temperature spectrum; tumorous cells

have high temperature than healthy ones. Five papers included in

this SR are using IRT. Fig. 7 presents samples of IRT images used

in publications of the proposed SR. One of the considered papers
m  
sed both of US and DM, so the total number of modalities in the

hart is 155. 

From data extraction process, Fig. 8 shows a pie chart of the

sed image modalities in the proposed literature papers. Each sec-

or of the pie shows the extent of utilizing each of these different

odalities. It is shown that the most used medical images for de-

ection of breast cancer using CADs is the DM. 

.2. Selected features 

The selected features are capable of differentiating between

ormal and cancerous regions in order to minimize the classifica-

ion error. Different publications use different set of features which

hey found most suitable for this task. A huge number of features

re assembled in this SR but only samples of the most used and

elected features are presented in this section. 

The most used features types which have been found in pub-

ications of this SR for breast cancer classification are histogram,

orphological, textural, speculation, geometric, kinetic, and binary
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Table 5 

Science Direct (Elsevier) results. 

Reference Imaging 

modality 

MLT Scope Evaluation results Used data set 

[72] US LR classify breast tumors based on tumor 

size. 

In data subset of tumors < 1 cm: 

Acc = 81.4%, Sn = 83.3%, 

Sp = 79.5%, AUC = 0.852 

In data subset of tumors ≥ 1 cm: 

Acc = 81.8%, Sn = 85.4%, 

Sp = 77.8%, AUC = 0.855 

Private 

156 tumors 

78 benign 

78 malignant 

[73] DM DL detection of malignant lesions and 

benign abnormalities 

AUC = 92.2% Private 

45,0 0 0 images 

[74] DM QDA automatic localization of malignant 

sites of asymmetry 

Acc = 79%, Sn = 83%, 

Sp = 75% 

MIAS 

DDSM 

94 images 

[75] US RF Benign/malignant tumor classification AUC = 99% Private 

31 malignant 

28 benign 

[76] shear-wave 

elastogra- 

phy 

DL differentiation between benign and 

malignant breast tumors. 

Acc = 93.4%,Sn = 88.6%, 

Sp = 97.1%, AUC = 0.947 

Private 

227 images 

135 benign 

92 malignant 

[77] DM Extreme Learning 

Machine 

(ELM-ANN) 

distinguishing malignant masses from 

benign ones 

DDSM: 

Acc = 95.73, Sn = 94.88 

Sp = 97.16, AUC = 0.9742 

MIAS: 

Acc = 96.02%, Sn = 96.29% 

Sp = 94.32%, 

AUC = 0.9659 

DDSM 

MIAS 

[78] DM DL diagnosis of breast cancer Acc = 82.43%, Sn = 81% 

Sp = 72.26%, 

AUC = 0.8818 

Private 

1874 pairs of 

images 

[79] US DT 

ANN 

RF 

SVM 

distinguish benign from worrisome 

lesions 

SVM: 

Acc = 77.7%, AUC = 0.84 

RF: 

Acc = 78.5%, AUC = 0.83 

Private 

283 lesions 

[80] DM ANN classify tumors as benign or malignant Acc = 90.94%, Sn = 100% 

Sp = 97.30%, 

AUC = 96.89% 

MIAS 

57 images 

37 benign 

20 malignant 

[81] DM DT, 

DA 

KNN, NB 

Probabilistic-ANN 

SVM, AdaBoost 

Fuzzy Sugeno (FSC) 

classification of normal, benign and 

malignant 

KNN: 

Mean Acc = 98.69% 

Sn = 99.34%, 

Sp = 98.26% 

DDSM 

690 images 

[82] DM ANN online classification as normal benign/ 

malignant tumor. 

Acc = 96% 

Sn = 98.6% 

Sp = 89.3% 

MIAS 

BancoWeb 

100 images 

[83] DM ANN Neuro-fuzzy mass detection process BRBP-ANN: 

Average Recognition rate = 97.08% 

Neuro-fuzzy: 

average recognition rate = 95.42% 

MIAS 

[84] DM DL breast mass classification Acc = 96.7% DDSM 

[85] DM DL classification of mass lesions AUC = 0.826 Private 

344 patients 

[86] DM DT 

RF 

SVM 

PL 

differentiating normal, benign and 

malignant in breast tissue 

PL: 

Acc = 100% 

AUC = 1.00 

DDSM 

BCDR 

[87] DM ANN 

SVM 

computer aided detection (CAD) 

systems 

ANN: 

Acc = 79.1%,Sn = 81.6%, 

Sp = 71.1% 

Private 400 cases 

[88] cytological 

images 

(microscopic 

Images) 

ANN 

SVM 

classification system for cancer 

malignancy grading 

ANN: 

Acc = 87.1%,Sn = 100%, 

Sp = 86.4% 

SVM: 

Acc = 77.23%,Sn = 96.49%, Sp = 77.27% 

Private 202 images 

in the database, 

101 cases. Pair of 

images describes a 

single case 

[89] US Binary-LR computer-aided tumor detection mapping rate of 80.39% Private 18 cases 

[90] DM SVM classification as mass or normal and 

breast density classification 

Mini-MIAS: 

Acc = 99%, AUC = 0.9325 

Inbreast: 

Acc = 92.37%, 

AUC = 0.99 

Mini-MIAS 

Inbreast 

[91] shear-wave 

elastogra- 

phy 

LR distinguish malignant from benign 

breast tumor 

Acc = 88%, Sn = 81% 

Sp = 91% 

AUC = 0.89 

Private 

57 benign 

31malignant 

( continued on next page ) 
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Table 5 ( continued ) 

Reference Imaging 

modality 

MLT Scope Evaluation results Used data set 

[92] DM SVM automatic mass detection for diagnosis 

of suspicious regions 

Sn = 82.4% DDSM 

[93] DCE-MRI LDA 

KNN 

Gentleboost (GB) 

SVM 

RF 

detection of breast RF: 

Sn = 95% 

Private 

209 images 

[94] US SVM automatically detect the tumor regions Acc = 0.983 ± 0.013 

Sn = 0.974 ± 0.035 

Sp = 0.985 ± 0.019 

AUC = 0.997 ± 0.003 

Private 

46 images 

[95] DM AdaBoost detection and classification as benign 

/malign 

Mean Acc = 91.43% 

Sn = 87.15%, Sp = 93.58% 

AUC = 0.9036 

MIAS 

[96] DM KNN distinguish between normal and 

abnormal breast tissues and tumors 

as malignant or benign 

Mini-MIAS 

abnormality detection: 

Acc = 91.27, AUC = 0.989 

malignancy detection: 

Acc = 81.35, AUC = 0.841 

Mini-MIAS 

252 images 

DDSM 

11,553 ROI 

[97] DM SVM classification of regions extracted as 

mass /non-mass. 

Acc = 98.88% 

Sn = 98.60% 

Sp = 98.85% 

DDSM 

3404 ROI 

[98] 

Elastography 

Fuzzy C-means distinguishing malignant from benign 

tumors 

Acc = 80%, Sn = 80% 

Sp = 80%, AUC = 0.84 

Private 

45 malignant 

45 benign 

[99] DM SVM distinguishing between abnormality 

(mass/ microcalcifications) 

&(benign/malignant) 

Acc = 99% ± 0.50 

AUC = 0.9900 ± 0.0050 

MIAS 

Inbreast 

[100] DM ANN classification as(normal/abnormal) then 

the abnormal as (benign/malignant) 

RBFNN(normal/abnormal): 

Acc = 93.98, Sn = 97.22% 

Sp = 91.49% 

RBFNN(benign/malignant): 

Acc = 94.29%, Sn = 100% 

Sp = 89.47% 

MIAS 

[101] US NB 

LR 

AdaBoost 

differentiating benign and malignant 

masses 

Sn = 90% 

sp = 97.5% 

AUC = 0.98 

private 

246 patients 

[102] US SVM lymph node classification Sn = 95%, Sp = 90%, 

AUC = 95% 

Private 105 images 

[103] US Binary LR second viewer to avoid 

misclassification of carcinomas. 

Acc = 83%, Sn = 76%, 

Sp = 88% 

Private 69 

[104] DM SVM predict the near-term risk of 

developing detectable high risk 

breast cancer in the next sequential 

screening mammography 

examination 

AUC = 0.754 ± 0.024 Private 90 cases 

[105] DM LDA breast density classification MIAS: 

Acc = 99.75 

FFDM: 

Acc = 91.58% 

MIAS 

322 images 

Private 

full-field digital 

mammogram 

(FFDM) 1459 

images 

[106] DM SVM 

KNN 

DT 

Fisher LDA 

classify as normal, benign, and 

malignant 

SVM: 

Acc = 90.60% 

DDSM 

IRMA 

MIAS 

[107] DM Extreme Learning 

Machine 

(ELM-ANN) 

breast tumor detection Acc = 82.6% 

Sn = 86%, Sp = 78.9% 

Private 

482 images 

[108] DM MLP-ANN 

KNN 

SVM 

classify as normal/abnormal & 

benign/malignant 

MLP-ANN: 

Acc = 71% 

Sn = 66% 

Sp = 77% 

MIAS 

181 images 

[109] DM PL define the mammogram images as 

normal or abnormal 

AUC = 0.98 ± 0.03 DDSM 

360 images 

[110] microscopic 

images 

KNN 

NB 

DT 

classify as benign/malignant All classifiers: 

Acc = 96 to100% 

Private 

500 images 

25 benign 

25 malignant 

[111] DM SVM classification as mass or non-mass Acc = 96.38%, Sn = 100% 

Sp = 95.34% 

AUC = 0.93 

DDSM 

( continued on next page ) 
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Table 5 ( continued ) 

Reference Imaging 

modality 

MLT Scope Evaluation results Used data set 

[112] DCE-MRI LSMD 

LR 

SVM 

differentiation between malignant and 

benign lesions 

SVM: 

Sn = 95% 

Sp = 78.19% 

AUC = 0.9651–0.9755 

Private 

115 images 

78 malignant 

37benign 

[113] DM SVM predict the risk or likelihood of breast 

cancer development 

AUC = 0.725 ± 0.018 Private 

994 cases 

[114] MRI SVM classify into normal or non-normal Acc = 98% Private 

120 images 

70 normal 

50 abnormal 

Fig. 6. Samples of histological images used in publications of the proposed SR (adapted with permission from Elsevier Publisher from Ref. [88] ) [88] . 

Fig. 7. Samples of IRT images used in publications of the proposed SR (adapted 

with permission from Springer Publisher from Ref. [63] ) [63] . 

98

30

14

8 5 Digital Mammogram (DM)

Ultrasound (US)

Magnetic Resonance Imaging (MRI)

Microscopic (histological)

Infrared thermography (IRT)

Fig. 8. Pie chart of different modalities used in different CAD systems. 
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bject features. Samples of observed features for each of these dif-

erent types are: 

Histogram Features like Mean, Standard Deviation, Skew, Energy

nd Entropy. 

Morphology like Area overlap ratio, normalized average radial

istance ratio, standard deviation of normalized distance ratio,
ariance of distance ratio, compactness, smoothness, margin sharp-

ess, variance in margin sharpness. 

Textural like Contrast, Correlation, Difference in entropy, Differ-

nce in variance, Energy, Entropy, Homogeneity, Information mea-

ure of correlation, Maximum correlation coefficient, Sum average,

um entropy, Sum variance, Variance, Inertia, Inverse difference 

Spiculation like Margin sharpness, Full Width Half Maxi-

um(FWHM) border, Variance in margin sharpness, FWHM grown,

adial gradient index, Radial gradient grown, Radial gradient bor-

er, FWHM ROI, Radial gradient ROI, FWHM margin, Radial gradi-

nt margin. 

Geometric : Size, Circularity, Sphericity, Irregularity. 

Kinetics : Maximum enhancement, Time to peak, Uptake rate,

ashout rate, Curve shape index, Enhancement at first post con-

rast time point, Signal enhancement ratio. 

Binary Object Features like Area, Centroid, Orientation (Axis of

east second moment), Perimeter, Euler number, Projection, Thin-

ess and Aspect ratio [166,167,169] . 

The selected features are always organized in a database and

rovided as an input to the MLT classifier. 

.3. Machine learning techniques 

Several MLTs are used for breast cancer detection, prediction,

nd diagnosis. For the classification algorithms, the dataset is di-

ided into training and test sets. Developing the model is done us-

ng the training dataset; afterwards the validation of the training

odel is accomplished using the test dataset. From data extraction

rocess, many MLTs are used for the classification of breast tissues

ased on the features extracted from images. 

In Tables 4–7 , only the results obtained due to the test set

xamination are extracted. Some studies use more than one MLT

lassifier to find the best method in classification of different

reast cancer problems, in this case only the best Acc values

chieved for each problem are recorded such as in [28] . In pa-

ers that adopt one or more classifiers and use others for the pur-

ose of comparison, only the adopted classifiers are mentioned. In
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Table 6 

IEEE search results. 

Reference Imaging 

modality 

Machine learning 

technique 

Scope Evaluation results Used data set 

[115] DM DL classification to mass and normal Sn = 89.9% Private 

198 images 

(99 mass and 99 

normal) 

[116] DM SVM 

MIL 

classification as normal or abnormal MIL: 

AUC = 94.4% 

DDSM 

[117] DM SVM Classification of breast cancer Acc = 91.25% (DDSM) 

[118] US Back Propagation 

–ANN 

Classification of breast cancer Acc = 94.0% 

Sn = 94.4% 

Sp = 93.6% 

Private 

200 images 

102 benign 

98 malignant 

[119] DM NB 

DT 

KNN 

SVM 

classification of breast tumors SVM: 

Acc = 74.92% 

MIAS 

Inbreast 

[120] 

histopathology 

images 

(microscopic 

Images) 

KNN 

SVM 

RF 

Quadratic Linear 

Analysis (QDA-LDA) 

classification into two classes QDA: 

Acc = 100% 

Private 

7909 images 

82 patients 

[121] DM Transductive Semi 

Supervised 

- SVM 

classification of the tumors in terms of 

benignity or malignancy 

Acc = 93.1% 

Sn = 83.0% 

Sp = 89% 

DDSM 

200 images 

[122] DM SVM 

KNN 

classification of tissue density SVM: 

Acc = 91.51%, Sn = 87.33% 

Sp = 93.63% 

MIAS 

[123] IRT DT classification of breast cancer Acc = 90.10% 

Sn = 81.02% 

Sp = 92.35% 

Private 

150 images 

[124] DM Optimum-Path RF classification to identify the presence 

of breast masses 

Recognition rate = 99.9% Private 

120 images 

[125] DM SVM classification of breast cancer Acc = 96.3%, Sn = 98.7% 

Sp = 90.1% 

MIAS 

[126] DM ANN classification of breast tissues into 

groups of normal and abnormal 

Classification rate = 91.64% MIAS 

[127] DM SVM classification of breast cancer MIAS: 

Acc = 95.80%, Sn = 98.43% 

Sp = 93.34% 

DDSM: 

Acc = 95.78%, Sn = 96.74% 

Sp = 94.87% 

MIAS 

DDSM 

[128] DM SVM classification of breast cancer Acc = 94.44%, Sn = 95.88% 

Sp = 93.10% 

DDSM 

[129] DM Fisher’s Linear-DA 

SVM, DT 

KNN 

classification of breast cancer SVM: 

Acc = 94.67% 

IRMA 

[130] DM SVM 

KNN 

DA 

classification between masses and 

normal breast tissue 

KNN: 

Sn = 94% 

Sp = 98% 

DDSM 

[131] DM Multiple-Instance 

Learning (MIL) 

Classification to recognize benign 

versus cancer discrimination 

Acc = 91.1% DDSM 

720 images 

[132] IRT Fuzzy Classifier classification between cancerous and 

healthy breasts 

Sn = 82.35% 

Sp = 92.15% 

Private 

[133] DM ANN classification of masses on a risk rate 

scale 

Acc = 98% Private 

100 patients 

[134] DM SVM classification of breast cancer Acc = 98.33% Private 

[135] 

pathological 

images 

microscopic 

images 

SVM differentiating stage I breast cancer 

from other stages 

Classification accuracy improved by 3%. 

Classification performance is 12%. 

Publicly available 

database TCGA (The 

Cancer Genome 

Atlas). 86 patients 

[136] DM Echo State Network 

(ESN-ANN) 

SVM 

classification as malignant and benign 

cases 

ESN-ANN: 

Acc = 98% 

MIAS 

[137] Microscopic SVM classification of breast cancer Classification efficiency 

= 82%. 

Private 

[138] MRI SVM classification of suspicious malignancy Acc = 94% Private 

70 clinical cases 

[139] DM SVM classify normal from abnormal cases Acc = 96% DDSM 

( continued on next page ) 
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Table 6 ( continued ) 

Reference Imaging 

modality 

Machine learning 

technique 

Scope Evaluation results Used data set 

[140] IRT Sequential 

Minimum 

Optimization-SVM 

NB 

classification for detection of malignant 

breast conditions 

SMO-SVM: 

Acc = 61.8%, Sn = 61.72% 

Sp = 62.9% 

Private 

102 images 

54 normal 

48 finding 

[141] DM Multi-Layer 

Perceptron 

(MLP-ANN) 

classification between normal, benign, 

and malignant. 

MLP-ANN: 

Acc = 96.66% 

Sn = 96.73% 

Sp = 97.35% 

AUC = 96.6% 

Private 

40 images 

14 benign 

6 malignant 

20 normal 

[142] DM (MLP-ANN) classification into malignant, benign 

and normal cases. 

Acc = 91.66%,Sn = 88.88% 

Sp = 93.72% 

AUC = 96.7% 

private 

40 images 

[143] US Fuzzy-ANN Classification of breast nodules as 

either benign or malignant 

Acc = 90% to 92% Private 

65 images 

31 benign 

34 malignant 

[144] DM Radial Basis 

Function-ANN 

classification into benign and 

malignant masses 

Acc = 89%, Sn = 89.5% 

Sp = 11.54% 

Mini MIAS 

148 images 

[145] DM (MLP-ANN) 

SVM 

KNN 

classification of breast cancer AUC Figures MIAS 

80% training 

20% testing. 

[146] DM SVM classification of breast cancer SVM: 

Recognition rate = 89% 

DDSM 

[147] US SVM classification of breast masses Acc = 89.0 ± 3.6%, 

Sn = 91.0 ± 5.2%,Sp = 91.0 ± 6.6% 

Private 200 images 

[148] DM SVM classification of breast cancer Reduced FPs by 30% with the true 

detection rate at 85%. 

Private 

200 images 

[149] DM SVM, NB 

KNN, LR 

DT, RF 

(MLP-ANN) 

classification of breast cancer SVM: 

Acc = 74% 

MLP: 

Acc = 76% 

MIAS 

[150] US SVM classification of breast cancer Acc = 88.18%, Sn = 88.33% 

Sp = 88.00% 

Private 

105 cases 

[151] DM SVM classification of breast masses Acc = 89.09% DDSM 

600 training 

200 test 

[152] DM Adaptive Kernel 

Learning – NB 

classification of breast cancer Sn = 87% Private 

66 cases 

[153] DM ANN 

SVM 

classification of breast cancer SVM: 

Sn = 98% at 0.85 FP/image 

ANN: 

Sn = 98% at 0.6 FP/image 

MIAS 

[154] DM Fuzzy Inference 

Systems (FIS) SVM 

classification to detect micro 

calcifications 

SVM: 

Sn = 99.60% 

Sp = 99.11% 

MIAS 

16 images 
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he papers that try many MLTs to classify breast cancer problems,

ll of them are mentioned and only the best achieved results are

ecorded in the data tables. In case of using combined MLTs, all

f them are mentioned and Acc of the combined techniques are

ecorded. 

A brief description of each technique used in the SR is given

elow: 

SVM classifier is the widely used MLT in the papers investigated

n our SR. It is a supervised classifier. It builds a model that uses

 hyperplane as a boundary that distinguishes various points in 2

ifferent classes and separates them. This plane is used to classify

 test sample [180] . In the presented study, the number of publica-

ions which adopts SVM as a classifier is 81which represents 52.6%

f the total considered studies. The maximum accuracy achieved

sing SVM is 100% as stated by [67] . Also, in [90] the Acc. value

chieved by SVM is 99%. As can be seen, classifying breast cancer

issues using SVM can accomplish an excellent Acc values. 

ANN classifier is a network that connects all nodes together im-

tating the human brain neurons. The input to one of the nodes is

he sum of the output of all the nodes to which it is connected

ultiplied by a certain determined weight. A “transfer function”

rocesses the output value from a certain node. The NN is formed
f consecutive layers. An input layer receives data and transfers it

o nodes in the first hidden layer after assigning them weights.

he result is transformed to the nodes in the next layer and so

n. The last layer provides the network’s output. Number of ANN

ublications considered in the presented SR are 40 which is con-

idered 25.97% from the total publications number. ANN has been

ombined with many other classification techniques such as: in

26] , it is combined with associative classification technique which

s called (ACNN) and with adding fuzzy it is called (ACFNN), this

ombination is created and evaluated. A fuzzy neural network is

 single architecture combining the elements of fuzzy and neural

etwork. It is a learning machine that uses the parameters as fuzzy

ets. By using these techniques in combination with ANN, the au-

hors indicate that the performance of ACFNN is better than ACNN

ith Acc equal to 95.1%. Also, the fuzzy inference system (FIS) is

sed with ANN as a neuro-fuzzy system in [83] with Acc 95.42%.

our considered papers are using wavelet neural networks (WNN)

lassifiers which is a kind of feed-forward network whose acti-

ation functions are drawn from wavelet basis such as [60] that

as Acc of 98.14%. Five papers are using a multilayer perceptron

MLP) which is a feed-forward artificial neural network model that

aps sets of input data onto a set of appropriate outputs. The Acc
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Table 7 

PubMed search results. 

Reference Imaging 

modality 

Machine learning 

technique 

Scope Evaluation results Used dataset 

[155] US SVM classification to tumor class Acc = 98.2%, Sn = 98.4%, 

Sp = 97.8% 

Private 110 cases 

[156] 

Histopathology 

(micro- 

scopic 

images) 

DL breast cancer detection Breast results (mean ± std): 

Acc = 0.86 ± 0.03, Sn = 1, 

Sp = 0.72 ± 0.10 

Private 58 

H&E-stained 

histopathology 

images of breast 

tissue 

[157] DM GentleBoost Classify microcalcification groups Sn = 76%, Sp = 98% Private 1088 cases 

[158] DM SVM 

NB 

KNN 

LR 

DT 

RF 

MLP – ANN 

detection of mass RF: 

Acc = 91.4%, Sn = 67.9%, 

Sp = 93%, AUC = 90.1% 

mini-MIAS322 

digitized 

mammograms 

[159] MRI RF differentiate among mass and non mass Sn = 100%, Sp = 77%, 

AUC = 92% 

Private 240 patients 

[160] US SVM distinguishing between TNBC and benign Acc = 94.81%, Sn = 94.12%, 

Sp = 96.72% 

Private 169 images 

[161] microscopic 

images 

RF 

SVM 

diagnosis of breast cancer Acc = 90%, Sn = 94.59%, 

Sp = 96.72% 

Private 228 

[162] DM ANN detection of breast cancer Sn = 68.8%, Sp = 95%, 

AUC = 0.851 ± 0.046 

Private 1896 

[163] US SVM discriminate the grades of breast cancer tumor Acc = 85.14%, Sn = 79.31%, 

Sp = 86.55% 

Private 148 images 

[164] DCE-MRI SVM classifying as malignant and benign Sn = 80.0%, Sp = 90%, 

AUC = 0.919 ± 0.029 

Private 115 images 

[165] DM AdaBoost-SVM diagnosis of breast cancer AUC = 0.89 DDSM 

[166] DM Fully 

Complex-Valued 

Relaxation Neural 

Networks (FCRN) 

ANN 

classification as normal, benign and malignant Acc = 98, Sn = 97, 

Sp = 100, AUC = 0.947 

MIAS 

[167] DCE-MRI SVM discriminate between lesion classes AUC = 0.77 Private 

585 cases 

[168] MRI fuzzy c-means distinguishing malignant and benign lesions AUC = 0.88 Private 

15 malignant and 8 

benign 

[169] MRI Bayesian ANN classification of breast cancer using HiSS MRI 

and clinical DCE-MRI 

For HiSS 

AUC = 0.92 ± 0.06 

For DCE-MRI 

AUC = 0.90 ± 0.05 

Private 

40 cases with 34 

malignant, 7 

benign lesions 

[170] microscopic 

images 

KNN 

ANN 

SVM 

classification into different grades of 

malignancy (grades I–III) 

SVM 

ACC = 96.9 

Private 

65 ROIs: 20 grade I, 

20 grade II, and 25 

grade III. 

[171] DM QDA detection of breast diseases at their early 

stages 

SN = 80% 

AUC = 0.70. 

Private 

158 images 

[172] DM DT 

LDA 

SVM 

classify breast cancer as normal, benign, and 

malignant 

DT: 

private DB 

Acc = 96.3% 

DDSM 

Acc = 91.6% 

Private 

300 images 

DDSM 

300 images 

[173] US DT classify breast cancer AUC = 0.90 ± 0.03 Private 

250 patients 

96 malignant 

154 benign 

[174] DM SVM detection of suspicious lesions in mammogram Sn = 94.5% MIAS 

164 images 

[175] DM LR classify breast cancer AUC = 0.7838 DDSM 

Private (1006 cases 

(646 benign and 

360 malignant)) 

[176] US SVM classifying solid breast masses ACC = 75.5, Sn = 78.9%, 

Sp = 73.6%, AUC = 0.82 

private 

110 images 



N.I.R. Yassin et al. / Computer Methods and Programs in Biomedicine 156 (2018) 25–45 39 

a  

h  

b  

l

 

a  

s  

t  

b  

K  

c  

w  

r

 

t  

i  

a  

c  

m  

t  

d  

b  

h  

t  

e  

t  

t  

i  

b  

s  

t  

i

 

f  

f  

w  

D  

e  

t  

n

 

c  

o  

u  

m  

p  

c  

t  

A

 

f  

f  

s  

d  

w  

c  

1

 

g  

T  

p  

o  

t  

r

 

l  

m  

a  

t  

6

 

t  

p  

s  

t  

l  

D  

b  

l  

l  

u  

t  

i  

e  

T

 

o  

j  

n  

c  

I  

v  

i  

m  

o  

a  

a  

c  

i  

t

 

o  

c  

a

 

i  

d  

a  

m  

a  

a

 

v  

b  

a  

a  

u  

o

 

b  

t  

a

 

c  

o  

t

 

fi  

d  

c  
chieved using MLP in [141] is 96.66%. Many other types of ANN

ave been used in the literature such as probabilistic ANN, radial

asis function (RBF), extreme learning machine (ELM), and convo-

utional ANN or CNN which is used in deep learning. 

KNN classifier is a supervised classification method. It classifies

n unknown sample by initially calculating the distance of that

ample to all the training samples. It determines k smallest dis-

ances. The output class label of the unknown sample is assigned

y the most represented class in these k classes. The number of

NN publications considered in the presented SR is 21 which is

onsidered 13.63% from the total publication number. Many MLTs

ere used in [81] , KNN is the classifier which achieved the highest

ecorded mean Acc, that is 98.69%. 

DT sets a series of carefully composed questions about the at-

ributes of the test record in a tree structure. Every time an answer

s received, a follow-up question is asked till a conclusion is driven

bout labeling the class of the record. A decision tree classifier is

omposed of one root node, several internal nodes, and several ter-

inal nodes. The root and internal nodes include the test condi-

ions for the attributes to distinguish between records that have

ifferent qualities. All terminal nodes are assigned a class label. For

uilding decision trees the core algorithm uses entropy to evaluate

ow homogenous the sample is. If homogeneity is fully satisfied

he entropy is zero and if the sample is an equally divided it has

ntropy of one. Decision tree construction is about finding an at-

ribute that returns the highest information gain or in other words

hat returns the most homogeneous branch. The information gain

s based on the decrease in entropy after the splitting of a dataset

ased on a certain attribute. The number of DT publications con-

idered in the presented SR is 14 which is considered 9% from the

otal publication number. The highest Acc value achieved using DT

s 97.51% in [49] . 

DA is a statistical supervised classifier that aims to find decision

unctions that respond to samples from different classes in a dif-

erent manner. Three types of DA are collected in the presented SR

hich are Linear (LDA), Quadratic (QDA), and Kernel. All types of

A are counted together; the number of DA publications consid-

red in the presented SR is 14 which is considered 9% from the to-

al publication number. The highest Acc value achieved using ker-

el self optimization fisher DA is 94.46% in [68] . 

RF merges several decision trees for prediction, and they are

onstructed by grabbing several classification trees together. Each

ne of these trees is an independent one. When data is extremely

nbalanced the RF gives suboptimal results. RF can be imple-

ented easily and it performs predictions for large number of in-

ut variables with high accuracy. The number of RF publications

onsidered in the presented SR is 13 which is considered 8.4% of

he total publication number. Using RF in [124] achieved maximum

cc of 99.9%. 

Fuzzy classifier specifies partial membership for an object in dif-

erent classes with different degrees. A classifier is described by

uzzy IF-THEN rules. Fuzzy c-mean (FCM) is the most popular un-

upervised classification algorithm based on fuzzy. In this case, the

ata points have their membership values with the cluster centers,

hich will be updated iteratively. Twelve papers are using fuzzy

lassifiers which are considered 7.79%. In [45] the achieved Acc is

00% using fuzzy. 

NB depends on a probabilistic technique and Bayes theorem. It

ives probabilities that a given pattern belongs to a specific class.

he probability of a random class variable is measured and com-

uted from observations that are given about the value of an-

ther set of random variables. There are 10 NB classifiers found in

he collected studies which are considered 6.4%. NB achieved Acc

anges from 96 to 100% as stated in [110] for all used classifiers. 

LR was developed by statisticians and it is commonly used in

earning as other classifiers developed by the ML scientists. LR is
ostly used for binary classification problems. It predicts the prob-

bility of an incident based on a set of values used as predictors. In

his SR, 10 publications adopt LR as a classifier which is considered

.4%. The maximum Acc recorded using LR is 88% in [91] . 

DL recent trend in machine learning resulted in new techniques

o train deep neural networks, which produce highly successful ap-

lications in many pattern recognition tasks such as image and

peech recognition [73] . So the most publications found in this SR

hat uses DL are recent ones. DL is a set of algorithms that try to

earn in multiple levels, representing various levels of abstraction.

L typically uses ANN. Distinct levels of concepts are represented

y the levels in the learned statistical models. Concepts of higher

evel are defined from lower-level ones, and at the same time these

ower level ones can help to define other higher-level concepts. DL

ses the back propagation algorithm to find out complicated struc-

ure in huge data sets to indicate how a machine should change its

nternal parameters that are used to compute the representation in

ach layer from the representation in the previous layer [181,182] .

he maximum Acc recorded using DL is 96.7% in [84] . 

Ensemble system is a combination of optimized classifiers whose

utput was combined using ensemble combination rules like ma-

ority voting, minimum, maximum, average and product. A few

umber of ensemble systems are found in our SR. One of them

onsists of (DT, SVM, and KNN) and its achieved Acc was 72% [71] .

t is observed that using standalone classifier achieve greater Acc

alue than when it is used in ensemble system. Also, four boost-

ng learning are found in data extraction. Boosting is an ensemble

achine learning method which converts weak learners to strong

nes. The used boosting algorithms are Adaptive Boosting (Ad-

Boost), and Gentleboost. In [95] , the achieved mean Acc using Ad-

Boost is 91.43%. In general, using ensemble algorithms in breast

ancer CADs is considerably little which can be a point of research

n the future to improve the performance of CAD systems for bet-

er cancer diagnosis. 

ARM is used for discovering the repeated items, correlations,

r associations in different datasets and thus generates the asso-

iation rules between sets of items. Three papers uses ARM with

chieved Acc 98% in [57] . 

MIL is a supervised learning that solves learning problems with

ncomplete information about data labels. In MIL, each instance is

escribed by a feature vector and the class label is associated with

 big bunch of instances. The aim of the MIL is to develop learning

odel for these bunches classification. Two articles have used MIL

s a classifier [131] and [116] the first one achieved Acc of 91.1%

nd the second obtained AUC of 94.4%. 

PL maps a d-dimensional feature vector into an L-dimensional

ector. Therefore, the dimensionality of the expanded vector can

e expressed in terms of the polynomial order and the dimension-

lity of the input vector. Finally, the classifier output is obtained

fter a linear combination of the expanded vector. Two papers are

sing PL to classify breast cancer tissues. 100% Acc value has been

btained in [86] . 

Each of the following MLTs have been used in one article: 

ACO is used for classification using an Ant-Miner algorithm. It is

uilt on performing classification using a rule base that is to be op-

imized using ant colony optimization. [46] uses ACO and obtains

 little Acc value of 79.52%. 

LSMD uses a classification rule that calculates the minimum Eu-

lidean distance between the unknown item and the mean values

f each of the other classes, using a linear equation that minimizes

he least square errors [112] . 

The obtained MLTs data have been analyzed using pie chart to

nd the most prominent technique used in CAD of breast cancer as

eclared in Fig. 9 . It is noticed that SVM is the most used classifi-

ation techniques for breast cancer CADs, and then ANN and K-NN
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Fig. 9. Pie chart of the various MLTs used in CAD of breast cancer. 
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Fig. 10. Bar chart of the most commonly used MLTs in CAD of breast cancer per year. 
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come afterwards. Other techniques have been explored but have

not been widely adopted. 

Moreover, Fig. 10 presents the number of publications using a

certain MLT for a specified year. The first 9 MLTs most commonly

used for breast cancer CAD systems were plotted versus the years

considered for this study; 2012 till January 2017. 

3.4. Evaluation metrics 

When a classifier is being trained using training data samples,

test data are then fed to the classifier to be classified to assess

the performance of the classifier. From data extraction process, it

can be stated that there are several ways for assessing classifiers.
n the evaluation process, the positive samples are those which go

nder the main class of interest. For cancer diagnosis, the positive

amples are those of malignant/abnormal class and the negative

amples are those of the benign/normal class. 

The main and most used evaluation metrics applied to CAD sys-

ems include Acc, Sn, Sp, and AUC. These are the most repeated

erformance measures which are clearly mentioned in the selected

rticles. The articles which use other performance measures are

ot omitted to maximize utilization. However, only the popular

etrics are defined as follows: (1) Acc represents how near the

redicted class is to the actual one. That’s to say it indicates per-

entage of samples that are rightly classified (normal and abnor-

al) to the total samples. (2) Sn is the true positive rate that de-
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Fig. 11. Classification techniques categorized according to frequency of usage in 

CAD systems for breast cancer. 
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Fig. 12. The number of used MLTs with different modalities. 
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ermines the percentage of correctly classified abnormal samples.

3) Sp is the true negative rate which determines the percentage

f correctly classified normal samples. (4) AUC is a common met-

ic that represents a way to choose optimal models and ignore sub

ptimal ones. It is the area under the Receiver Operating Character-

stic curve (ROC), which is a curve of the true positive rate versus

he false positive rate. The AUC takes a value between 0 and 1. A

ood diagnostic test is obtained when the AUC is close to one. Rea-

onable tests have AUC greater than or equal to 0.5 and less than

 [16] . 

Equations of Acc, Sn, and Sp are given as follows: 

cc = 

TP + TN 

TP + TN + FP + FN 

, Sn = 

TP 

TP + FN 

, Sp = 

TN 

TN + FP 

here TP: true positive, TN: true negative, FP: false positive, FN:

alse negative. 

.5. Databases 

Some public image databases are widely used for applying

reast cancer classification methods. These databases are mostly

M images such as Digital Database for Screening Mammography

DDSM) [183] , Mammographic Image Analysis Society (MIAS) [184] ,

mage Retrieval in Medical Applications (IRMA) [185] , Wisconsin

reast Cancer (WBC), and BancoWeb [186] . Also, there are two Por-

uguese’s datasets, the first is the INbreast database [187] and the

econd is Breast Cancer Digital Repository (BCDR) [188] . 

Moreover, papers using other types of image modalities usu-

lly depend on private databases for applying their methods. Pri-

ate databases are collected by individual groups independent of

ach other. Private databases present images of patients case stud-

es collected in local hospitals or research centers. This holds back

he analysis and comparison of different algorithms developed by

ne research group with the others and makes it ineffective. It is

ecommended to have standardized datasets that contain images

rom multiple sources for different image modalities. 

In data extraction process, the used datasets in each article are

ollected as well as the number of images, patients, and cases as

tated in the article. Also, the distribution of the datasets as (train-

ng and testing), (benign and malignant), and (normal and abnor-

al) is gathered. There is no standard neither in the number of

ases used nor in the division of cases into benign and malignant

r into normal and abnormal. So, there is a variety in the distribu-

ion of the data according to the insight of each author. 

. Discussion 

It is noticed that there is a significant diversity in the usage

atterns of MLTs, some of them have been used extensively, some

ave been used less frequently, and others have been used in low

ates. Fig. 11 presents a hierarchy chart of MLTs categorized accord-

ng to frequency of usage in CAD systems for breast cancer accord-

ng to the studied articles. 

A conclusion can be extracted from the studied articles accord-

ng to the used image modalities combined with different MLTs as

ollows: 

DM has been used with SVM in 50 papers; the range of

chieved Acc is from 64.7% to 100%. Two papers have achieved

cc 100% and 19 papers achieved accuracy in range 90% - 99.5%.

S has been used with SVM in 14 papers, the Acc ranges from

5.5% to 98.3%. Also, 9 papers are using MRI combined with SVM

ith maximum Acc value of 98% and the least achieved Acc was

2.8%. And 6 papers used microscope-SVM and the Acc registered

s 96.9%. Only 2 papers are using IRT-SVM and the achieved Acc

ere 88.1% and 61.8%. 

ANN is used with DM, US, MRI and microscopic images; it is

sed with DM in 34 papers and with US in 4 papers, one of them
sed both DM and US, only one paper with MRI and 2 papers with

icroscopic. In 20 papers with DM-ANN the Acc ranges from 90%

o 98.14%. In the rest of the papers that stated the Acc values, its

alue ranges from 71% to 89.38%. The highest achieved Acc with

S-ANN is 94%. 

KNN has been used in 21 papers, 14 with DM with the highest

cc registered 98.69%. One publication combined KNN with US, 3

ombined with MRI, and 3 combined it with microscopic modal-

ty. Table 8 shows the number of used MLTs distributed on differ-

nt modalities and the highest registered Acc of each combination.

ig. 12 shows the number of used MLTs versus different modalities.

. Conclusions and future work 

This systematic review aims to help researchers in innovating

nd developing CAD systems to assist the medical society in de-

ection/diagnosis and early treatment of breast cancer. The state-

f-the-art of the MLTs that have been used for CAD to detect breast

ancer from different image modalities has been explored. Accord-

ng to the collected data, it is difficult to comprehensively compare

ethods with each other due to several factors. Some of these fac-

ors are: the databases used for assessment, the samples of im-

ges selected for assessment, the number of samples used, the as-

essment approach (validation methodology, training and testing

et) used. Moreover, the tuning of parameters involved in different

ethods varies from one method to the other, thus adding another

bstacle for fair comparison between various methods. Generally,

mong the classifiers mentioned in the literature, SVM classifier

as been used extensively for breast tissue classification purposes.

he usage of artificial intelligence methods is increasing because
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Table 8 

The number of used MLTs with different modalities and the highest achieved Acc. 

Total SVM ANN KNN DT DA RF fuzzy NB LR DL boost ARM MIL PL ACO LSMD 

DM 50 33 14 10 9 6 7 6 3 5 4 3 2 2 

100% 98.14% 98.69% 97.51% 99.75% 99.9% 95.11% 89.3% – 96.7% 91.43% 98% 91.1% 100% 

US 14 4 1 2 2 2 2 1 6 1 1 

98.3% 94% – – 88.4% 78.5% 90–92 – 88% 93.4% –

MRI 9 1 3 2 3 2 1 1 1 1/–

98% – 74.4% – – 100% – – – –

micro 6 2 3 1 1 2 1 1 

96.9% 87.1% 96–100% 96–100% 100% 90% 96–100% – 86% 

IRT 2 1 1 1 1 

88.1% 90.1% – – 79.52% 
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of the effectiveness in classification and detection schemes assist-

ing experts in the medical field. 

Clinically, in countries that are routinely using CAD, there is

disagreement over the feasibility of using it as a result of some

problems such as time and cost increase due to false positive and

lack of training that lead to ignore suspicious lesions. Otherwise, in

other countries, it is truly challenging to bring CADs into clinics by

persuading the physicians with the effect of CADs as a supporting

tool to improve physicians’ performance. If some requirements are

fulfilled then the CAD system may become widely applied in clini-

cal practices without quarrel. These requirements are that the CAD

should save the radiologists and physicians time and effort, and it

should be affordable. Advances in CADs systems are to be obtained

by their application and trial in clinics. Observing the pitfalls dur-

ing the CADs clinical application will lead to improving their per-

formance, thus reducing false positive that may lead to psychologi-

cal, physical, and economic costs, and reducing false negative read-

ings that may cause neglecting of treatment. 

In the future work, it is recommended to have standardized

public image databases that contain images from different image

modalities for the same case to support the dependency of more

than one image modality in classification task and combine infor-

mation from multiple views. It will be wealthy if they contain DNA

sequence of cases. This will enable CADs to provide results that de-

pend on different perspectives concerning different modalities and

even sequences. 

Moreover, deep learning classifier is a promising trend that ap-

peared in the recent years. There is an increased interest in ap-

plying it in CADs systems in the last couple of years. Also swarm

intelligence is worth studying as it was rarely applied in the inves-

tigated publication in CADs systems. Developing MLT-CAD system

that combines more than one image modality is a necessity. Also

developing CAD systems using 3D mammography which is a new

trend that may help to improve CAD efficiency is an important is-

sue. These points should be considered to develop CAD systems in

the future. 
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